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Involution and constrained dynamics: 11. The Faddeev- 
Jackiw approach 

Werner M Seilertt 
School i f  Physics and Materials. Lancaster University. Bailrigg. LA1 4YB, UK 

Received 8 August 1995 

Abstract We study the symplectic approach to first-order systems with constraints from the 
point of view of the formal theory of differential equations. We concenmate especially on 
systems without firs-class constraints and give ageometric interpretation of an approach recently 
proposed by Barcelos-Net0 and Wotrasek. We further study the numerical properties of this 
approach. We also comment on some probIems concerning the application to field theories. 

1. Introduction 

In the previous paper of this series [35] we showed that many methods for the analysis 
of systems with constraints can be identified mathematically with completing the equations 
of motion to an involntive system. In this paper we specialize on systems described by 
Lagrangians which are linear in the velocities. 

Starting with a paper by Floreanini and Jackiw [le] about the quantization of self-dual 
fields in two dimensions, these systems have recently found some attention in the litera- 
ture. Especially, their circumvention of~the classical Dirac algorithm 1141 sparked some 
discussion 19, 121. Faddeev and Jackiw explained this approach, sometimes also called the 
symplectic formalism, in more detail in a later paper [15]. Actually, it can already be found 
in the classical textbook of Sudarshan and Mukunda [37]. Thus ‘Faddeev-Jackiw approach’ 
is somewhat of a misnomer, but we stick to this name, as it is widely used. 

The main interest in these systems arises from the fact that they yield  the Dirac 
bracket [I41 in a very simple way [21, 231. Barcelos-Neto and Wotzasek [4 ,5]  showed later 
how this property can be carried over to systems subject only to second-class constraints 
via an extension of the configuration space. 

Most of the present paper will concentrate on this approach. Besides showing how 
it appears from the point of view of the involution analysis, we will give a geometric 
interpretation and show that the main idea lying behind it is transforming the second-class 
constraints into first-class ones. We will also study the numerical properties of this approach 
and show that the equations of motion that kise are more stable than the standard formulation 
and thus less affected by the discretization error of the numerical approximation. 

We assume in the sequel that the reader is familiar with the material presented in 1351 
in order to avoid a tedious repetition. We also continue to use the notations introduced 
there. This paper is organized as follows. The next section presents the Faddeev-Jackiw 
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approach in the case of a regular system. Section 3 discusses the techniques introduced by 
Barcelos-Neto and Wotzasek for second-class constraints and the following section contains 
a g e o m e ~ c  interpretation of it. After some examples in section 5 we study the implications 
of this approach for the numerical integration of the equations of motion. Section 7 points 
out some problems in the application to field theories. Finally, some conclusions are given. 

2. First-order Lagrangians 

The symplectic formalism treats Lagrangians which are linear in the velocities: 

Uq', 4') = a;(q)4' - V(q) . ' 

av 
aqi 

(1) 
The corresponding Euler-Lagrange equations are 

(2) 'RI :A;,$ - - = O  i = 1, .. ., N 

where the mahix A is given by cross-derivatives of the ai 

Obviously, RI is an involutive first-order equation provided this matrix is non-singular. 
Hence from the formal point of view there is no need to consider any constraints; the 
system is unconstrained. 

If one follows the Dirac algorithm, one is forced to introduce N constraints, as all 
canonically conjugate momenta are independent of the velocities. Mathematically, this 
corresponds to insisting.~on treating (2)  as^ a second-order differential equation. Since 
RI is involutive, its prolongation is involutive, too, and no secondary constraints arise. 
Furthermore, all constraints are second class, for (2) represents a finite-type system [35]. 

The Faddeev-Jackiw approach is based on the observation that it is unnecessary to 
introduce the canonically conjugate momenti because (2) already possesses the structure 
of a Hamiltonian system with Hamiltonian V provided we define the Poisson bracket by 

14; ,  q j }  = ( A - I p  (4) 
hence the name symplectic formalism. This definition makes sense as long as the matrix A 
is non-singular. Cronstrom and Noga [13] demonstrated recently how one can explicitly 
construct the corresponding canonical coordinates. 

We show later in the more general case of a system with second-class constraints that 
exactly the same bracket structure arises if one eliminates the second-class constraints using 
Dirac brackets [14]. In the regular case this was already noted by Govaerts [21] and much 
earlier by Hojman and Urmtia [23]. 

In the case of a singular m a i x  A ,  we have 'true' constraints. Faddeev and Jackiw [U] 
resort then to Darboux's theorem to eliminate them explicitly. If this elimination is too 
complicated, they recommend one to apply the usual Dirac algorithm. At least for the 
construction of all constraints, there is no need for this. Since systems of ordinary differential 
equations always possess involutive symbols, the completion algorithm presented in [35] 
never raises the order of the system. Thus we can always obtain an involutivefirst-order 
system as equations of motion. 

The only point is that it is no longer possible to use the matrix A to define a symplectic 
structure. But even if one wants to follow Dirac's approach, it is computationally much 
simpler to complete a first-order system and to prolong it to second order afterwards than 
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the other way round. The true constraints are algebraic equations even in the Lagrangian 
formalism, and the other constraints are just prolongations of them. 

For counting the degrees of freedom we can employ the same approach as in 1351. 
Independent of the existence of true constraints, our completion algorithm applied to (2) 
terminates with a system of the following form: 

q ' = @ ( q i , q k )  l = 1 ,  ..., fi k > E  i = l ,  ... N 
(5) ~ 

M q i )  = 0 U = l ,  ..., M 
at"' : 

where dim kerA = M < a < fi < N and s c denotes the number of iterations in the 
algorithm. This yields a Cartan character ai') = N - fi. 

= N +ay) - M, as the dimension of the first-order jet bundle 
is 2 N .  Arguing as in [35] we note that the general solution of our equations of motion 
has this number of arbitrary Taylor coefficients of zeroth and first order. But it depends 
on 01; ' )  arbitrary gauge functions, thus we must subtract this number to get the number of 
coefficients describing an initial state. Since for different choices of the auge functions the 
evolution of the same initial state will differ, we must subtract again ai ). 

Taylor coefficients of zeroth 
and first order. This number is thus twice the number of de ees of freedom. Expressing 
the numbers fi, by the intrinsically defined values dimR, and ai') we find the same 
expression for the number of degrees of freedom as we derived in [35] for the Hamiltonian 
equations of motion of a general system 

dimay)  = 2N - fi - 

f 
We conclude that a physical state is described by fi - 

% 

F = dimay)  - 2 4 ) .  (6) 
It depends on the constraint structure whether one gains something by transforming a 

gened Lagrangian into a first-order one by extending the configuration space. This amounts 
essentially to transforming higher-order Euler-Lagrange equations into a first-order system. 
One, of course, obtains the same number of degrees of freedom, since this reduction does 
not change the Cartan characters [30, 321. Computationally one might save a few steps 
compared to the Dirac algorithm, especially if second-class constraints are present. 

3. Second-class constraints 

For systems having only second-class constraints one can use an idea of Barcelos-Net0 and 
Wotzasek [4, 51 to compute the Dirac brackets in a~direct manner. Thus we now consider 
the case where the matrix A does not have maximal rank. Let a basis of its null space be 
given by the vectors U;, i.e. 

(Y = 1, . . . , M . (7) u&(q) A,, (q) = 0 

This implies the existence of M 'primary' constraintst 

Introducing M additional coordinates h' and continuing with the modified Lagrangian 

t It could of course happen, that M varies on the configuration space. But we assume that it is consmt 
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we obtain new equations of motion 

Equivalently, we could write i = aiq' - ,i'& - V ,  since this differs from (9) only by a 
total derivative. This approach will be used in the case of field theories (cf section 7). 

Let us assume that the second set of equations in (10) is independent of the original 
equations of motion (Z),  i.e. the prolongation of the constraints leads to new ones. 
Equation (10) can be written again in the form of (2) on the enlarged configuration space, 
if we introduce the ( N  + M )  x ( N  + hf) matrix t? 

A@ = 0. 

If matrix is regular, one can use it to define a symplectic structure. Otherwise one 
repeats the process. There are two possible outcomes: either one obtains a regular matrix 
after a finite number of iterations, or the process stops, because the constraints do not 
generate new ones. We concentrate on the first case and assume for simplicity that t? 
already has maximal rank. 

From the point of view of formal theory this assumption implies that the modified Euler- 
' Lagrange equations I& are involutive. Indeed they are now even normal, as contraction of 
the first set of equations with the vectors U; leads to the equations 

The condition on the rank of t? implies that the matrix 

has maximal rank. Thus by a simple linear transformation we can obtain the solved form 
usually found in the standard existence and uniqueness theorems for ordinary differential 
equations. 

This implies further that we are dealing with a finite-type system. We have already seen 
in [35] that this is characteristic for systems subject only to second-class constraints. The 
appearance of first-class constraints is always connected with gauge symmetries and thus 
with arbitrary functions in the general solution. However, such functions cannot occur in 
the solution of a normal system of ordinary differential equations. 

To prove that the inverse of t? does indeed yield the correct Dirac brackets we compute 
them in the standard way 1141. As already mentioned, there are N primary constraints 

(14) $. , - - p' - q(q) =o.  

HT = V ( q )  + uj?h 

The total Hamiltonian of the system is given by 

(15) 
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with some multipliers U'. The primary constraints lead to the consistency conditions 

(16) 
. av 

' I  aq' 
(@ H T ) = A . . u ' - - = O .  I ,  

They are identical with the Euler-Lagrange equations (Z), if we identify the multipliers uj 

with the velocities 4'. 
If the matrix A is non-singular, these secondary constraints can be used to determine all 

multipliers ui and the Dirac algorithm stops here. In the case of a singular matrix we can 
solve only for some of them, as contraction with U; yields the 'true' constraints &. Their 
consistency conditions 

allow us to determine the remaining multipliers under the above assumptions. Thus tertiary 
constraints do not appear. 

To determine the Dirac bracket we must compute the structure constants of the Poisson 
algebra generated by the constraints 

The right-hand sides are the entries of the matrix A defined above by the modified 
Lagrangian L. In order to see that this yields essentially the same symplectic structure as the 
first-order approach we compute the Dirac brackets of the configuration space coordinates 9'. 
Since the 'true' constraints depend only on the q', we find 

in perfect agreement with (4). The generalization to the case that further extensions of the 
configuration space are necessary (i.e. tertiary and higher constraints appear in the Dirac 
algorithm) is straightforward. 

4. Geometric interpretation 

In [4, 51 Barcelos-Net0 and Wotzasek omit a discussion of the precise relation between the 
equations of motion (2) derived from the original Lagrangian L and those (equation (10)) 
obtained from the modified one t. This is, however, quite important for understanding the 
meaning of the multipliers A'. 

For this purpose we introduce vectors wi, p = M + 1.1. .  , N such that (U:, tu:) 
form a linearly independent set. Under the above assumptions we find the following 
local representation of the equation RI'' obtained from completing (2) consisting only 
of independent equations: 

IA=O a=1, ..., M .  
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Similarly we obtain a local description of 21 containing under our assumptions also only 
independent equations, 

a = 1, ..., M 

Although both represent finite-type systems, note the crucial difference that 21 is normal 
and does not contain any algebraic equations. This entails especially a relaxation of the 
found constraints: we no longer require that &, = 0 but only constant! Furthermore, 
while the solution space of RI1' is (N - M)-dimensional, dimRI = N + M. But this 
discrepancy is removed as soon as we require that h'(r) constant, because then both 
systems are identical and, of course, possess the same solutions. 

This is best seen by considering the initid-value problem for el. If the initial data 
(q&Ai)  are chosen such that @#(q;) = 0, then because of the regularity of Bab the 
corresponding solution of 21 will always stay on the submanifold described by A' = A: and 
thus project on a solution of Ry'. The choice of the A: is unimportant, as 'I?., is invariant 
under translations in A'. 

The differential parts of both systems are almost identical. The only difference lies in 
the additional term in the first set of equations in el. Solving the third set of equations 
for 2, we can write this term in the form - (B-l)u@@p a&/aq'. Thus it vanishes on the 
constraint manifold and it can be interpreted as the components of a vector field normal to 
the constraint manifold. Its effect will be discussed in more detail in section 6. 

Geometrically, the approach of Barcelos-Net0 and Wotzasek can be understood as 
embedding of the original system into a larger one such that the second-class constraints 
become first-class ones. Recall that the idea behind the definition of the Dirac brackets 
is the introduction of a &generare Poisson structure such that the second-class constraints 
become distinguished functions (sometimes also called Casimir functions), i.e. the Dirac 
bracket of any functions with a second-class constraint vanishes strongly. 

of any function F(q', AB) defined 
on the extended configuration space with the constraints r&(qi) we obtain using (11) 

If we compute the Poisson bracket derived from 

Thus as expected the Poisson bracket of any function independent of the multipliers A' with 
a constraint vanishes. This implies that the Poisson bracket of two constraints vanishes: 
they are now first class! 

The above-mentioned invariance under translations in Au therefore represents the 
invariance under the gauge transformations generated by the constraints. Reduction with 
respect to this gauge symmetry recovers the original configuration space. 

The interpretation becomes more complicated if I& is not yet involutive, i.e. further 
multipliers must be introduced. Then we can no longer conclude that all multipliers remain 
constant for initial values satisfying the constraints. One must distinguish the prolongations 
of which constraints are taken as independent equations. For these the algorithm has 
terminated and the corresponding multipliers remain constant. The others lead to further 
constraints ('the next generation') and their multipliers satisfy more complicated equations 
of motion. 
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However, the transition of the constraints from second class to first class also happens 
in this more general situation. The argument is exactly as above in (22). The Poisson 
bracket of any observable F ( q K )  independent of the multipliers with any of the constraints 
vanishes, since 

and one can easily see that even if is a 'higher generation' constraint, one always obtains 
a@,Jaq' = tiin and thus the expression on the right-hand side is zero. But the corresponding 
 gauge^ transformations become more complicated. 

We demonstrate this behaviour on an important class of constrained systems. They are 
described by Lagrangians of the form 

. .  
L2(qL ,  qf, P") = ; M i j ( q 9 q i 4 j  - V ( q 9  + ILU@&f) (24 

where M i j ( q K )  is a symmetric, positive-definite mass matrix. The holonomic constraints 
&(qK) are introduced via the multipliers p'. Such systems occur, for example, in multi- 
body dynamics, the modelling of robots, etc. Introducing additional coordinates U; we can 
rewrite L2 as an equivalent first-order Lagrangian 

~ ~ ( $ , ~ j , ~ i , @ )  = M i j u j 4 j  - l , + . . u ; u j  2 11 - ~ + ~ q , ~ , .  (25) 
It is easy to see that the first step of the algorithm of section 3 leads simply to replacing 

the multipliers pLn with the derivatives of some new multipliers. For simplicity, we continue 
to denote them with pe. Then we need a second step which introduces the constraints on 
the velocities into the Lagrangian. After that the algorithm stops with the Lagrangian 

The corfesponding equations of motion are 

By taking suitable linear combinations we can derive the following differential equations 
for the multipliers A': 

The right-hand side~contains the velocity constraints.  thus as before Am remains tonstant 
as long as the constraints are satisfied. In contrast, y' will generally not remain constant, 
but satisfies a rather complicated differential equation. 
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5. Examples 

We demonstrate these ideas on a simple system [3, 241 with a three-dimensional 
configuration space whose dynamics is determined by the Lagrangiant 

L = (42 + qdq i  + kq3 + $(k2 - 29293 - 4:) 
where k is a constant. In the formal analysis we start with the Euler-Lagrange equations. 
After a trivial algebraic manipulation they can be written as 

(29) 

Obviously this equation becomes involutive after one projection adding the integrability 
condition QZ = 0. It is also trivial to integrate it in closed form: 

qi(t) = at + b qz( t )  = 0 430)  = a  (31) 
with two integration constants a, b. 

For the Dirac analysis we need the canonically conjugate momenta 

pi = q z + q 3  p z = O  ~ 3 = k .  (32) 
At the same time these are the primary constraints. The total Hamiltonian is 

(33) HT = $(c$ + 24243 - k ) + ~ ( p i  - qz - 43) + uzpz + u3(p3 - k )  . 
This leads to the secondary constraints u2 + uj = 0, q3 = u1 and q 2  = 0. Their consistency 
conditions determine the multipliers u2 = u3 = 0. Hence we have four second-class 
constraints p2 = q 2  = 0 and p3 = k , q 3  = P I .  By direct inspection one sees that there is 
only one dynamical degree of freedom, namely (41, PI), having as Dirac bracket its standard 
Poisson bracket. 

In the symplectic formalism one finds in the first step the 'true' constraint q 2  = 0 and 
continues with the modified Lagrangian i = L +A&.. From it we derive the matrix 2 

2 

0 -1 -1 0 

A=(; 8 ;) (34) 

where the columns and rows are labelled by q l ,q z ,  43, A. This matrix is obviously invertible 
and yields the correct bracket, if we identify q 3  with the momentum p 1  . 

If, however, we compute the equations of motion, we obtain after some trivial 
manipulations 

As expected the equation q2 = 0 is missing and the solution space is consequently larger: 



Involution and consrrained dynamics: I1 7323 

with four integration constants i i , & . Z , c ? .  But as soon as we require that h(r) I constant 
we recover the correct solution, as this implies F = 0 aid c? appears only in h(r). 

This example also serves well to demonstrate the difference between first- and second- 
order formalism. Actually it stems from a slightly more complicated system where k is not 
treated as constant but as an additional coordinate [22]. But the real starting point is the 
following system of second-order equations: 

x = -  Y y=-y. (37) 
One can prove that these equations neither are nor can be transformed into the Euler- 

Lagrange equations of some Lagrangian [23]. But if we rewrite the system as a first-order 
one 

x = z  j = W  z=-w w = -y (38) 

(39) 
(Actually every first-order system of ordinary differential equations which is solved for the 
derivatives can be derived from such a linear Lagrangian, as the corresponding Helmholtz 
conditions are always (locally) solvable [23].) 

A normal form can be obtained by setting 

a Lagrangian exists, namely 

L = (y+z)X + wi + + - z y z  - 2 2 ) .  

91 = x  q 2 = 2  p I = y + z  pz=w. (40) 
Note, however, that we are now using as configuration space coordinates x and x, if 
we compare with the original second-order system. In first-order systems the distinctign 
between configuration and phase space begins to blur. This is the basis of the symplectic 
formalism. 

As a second example we consider the planar pendulum in Cartesian coordinates. For 
simplicity, we set all constants like length, mass, gravitational acceleration to 1. Its 
Lagrangian is 

L2(X,Yr.r,y,p) = ;(x~+Y*)-y+;p(X~+;2- 1). (41) 
We can transform it into a first-order one as in section 4. We are thus led to compare 

the following two formulations of the equations of motion. The standard approach yields 
after completion to involution the system 

P y  = PY 
Y = Pr x = P X  

XP, + YPy = 0 (42) 

Equation (27) applied to the Lagrangian (41) leads to the following formulation of the 
equation of motion: 

. 
p -x/l-p,i=O p S -yb-pSh+g'=O 

x - p , + x i = o  y - pr + y i  = 0 (43) l x  x i  + y y  = 0 ~ X P X  +yPr + pxx + pry = 0. 
The multipliers p, A satisfy the differential equations 
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As predicted the right-hand side of the equation for A vanishes as long as the velocity 
constraint is not violated. The expression for !i is the same as one obtains in the Dirac 
analysis of Lz for the multiplier f i  (cf (42)). Thus we have indeed just replaced this original 
p by the derivative of a new multiplier, also denoted by F. 

derived from the Lagrangian (41) yields the following structure 
matrix for the symplectic structure (the columns and rows are labelled p x ,  p , ,  x ,  y ,  f i .  A): 

Inverting the matrix 

One can easily check that the upper left 4 x 4 sub-matrix does indeed contain the Dirac 
brackets of x ,  y ,  p x ,  p,. as computed with the standard Dirac approach [16]. 

6. Some numerical considerations 

In the language of numerical analysis, the equations of motion of a constrained model form 
a differential-algebraic system [lo]. Such systems are much harder to solve numerically 
than normal systems. The ‘distance’ of a differential-algebraic system to a normal system 
is measured by the so-called (differentiation) index. In the language of the formal theory, 
this index can be interpreted as the number of prolongations which are needed to render the 
system involutive [25, 291. 

The difficulty arises from the fact that although all analytical solutions lie on 
the constraint manifold, the discretization error of any numerical method will lead to 
approximations not on it. If one applies standard methods for ordinary differential equations, 
one usually observes a significant drift away from the constraint manifold and thus obtains 
rapidly physically worthless solutions. 

The construction presented in section 3 is an example of an index reduction or constraint 
stabilization technique. Many different approaches for this reduction can be found in the 
literature (see e.g. [S, 19, 20, 26]), as most numerical methods cannot be applied reasonably 
to problems with an index higher than one or two. Most of them differentiate the constraints 
and add the result at a suitable place with some multipliers. 

Usually this addition is done in an ad hoc manner at the level of the differential 
equations. In contrast, the technique of section 3 performs the modification at the level 
of the Lagrangian. Thus one can speak of a symplectic index reduction, as one obtains a 
normal system with a symplectic structure. 

This entails that symplectic integrators [ 11, 31 J can be applied for the numerical solution. 
But usually these are constructed only for Darboux coordinates, i.e. they assume that the 
standard Poisson bracket is used. Feng and Wang [17] showed how symplectic integrators 
can also be derived in more general coordinates. However, their construction requires 
essentially the transformation to Darboux coordinates, although in an extended space. 

Since the symplectic structure depends on the concrete Lagrangian under consideration, 
it is necessary to derive a special integrator for each system. Thus it seems doubtful whether 
one can numerically exploit the symplectic structure of the first-order equations of motion 
with the presently known techniques. 

Nevertheless, the approach of Barcelos-Neto and Wotzasek is of interest for the 
numerical integration of constrained systems. In section 4 we have already mentioned 
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that at the level of the differential equations this approach leads to the addition of a term 
which represents a vector field normal to the constraint surface. We now study the effect 
of this term on the numerical integration. 

As long as the numerical solution remains on the constraint manifold this term vanishes. 
But if the discretization error leads to a deviation from this manifold, there are two 
possibilities: this term can either lead to an amplification of the error, if it points away 
from the manifold, or it tries to counter the error, if it points towards the manifold. 

Essentially, the vector field represents a linear combination of the normal vector fields 
a@w/aq'. The coefficients are of the form -(B-')@&I. Equations (8) and (13) imply that 
the matrix B,J can be written as 

In general, it is difficult to make statements about this matrix; in particular, not much is 
known about the eigenvectors U:. But the situation is much simpler in the neighbourhood 
of a minimum of the potential V. There we can neglect the second term in (46) and in the 
first term the Hessian of V is positive definite. 'In a suitably chosen coordinate system, the 
eigenvectors can be taken as the unit vectors e:, = 6; (define some of the new coordinates 
as (?" = &(q)). In these coordinates, B,J is also positive definite. 

A symmetric, positive-definite matrix is diagonalizable with positive real eigenvalues. 
Thus with a further change of coordinates we can transform it into diagonal form with only 
positive entries. In this form the inverse can be computed readily. Since its entries are also 
positive, we deduce that our vector field points under the made assumptions towards the 
constraint manifold. 

Although this derivation holds only in the neighbourhood of minima of the potential, 
we conjecture  that^ the formulation of the equation of motions obtained in section 3 is 
numerically more stable than the standard formulation based on a simple completion to 
an involutive system. As soon as a drift off the constraint manifold occurs, an additional 
'force' drives the system back on this manifold. 

We demonstrate this effect with a standard example from the theory of differential- 
algebraic equations by again considering the planar pendulum in Cartesian coordinates. To 
show the stabilizing effect we choose initial data consistent with the constraints and integrate 
both sets of equations of motions (42) and (43), respectively, numerically. Since we are 
only interested in the drift off'the constraint manifold. we take only the differential part of 
(42) into account, i.e. we do not apply any special method for differential-algebraic systems. 

As discussed in section 4 our approach mainly stabilizes the velocity constraint. But 
it is a well known empirical fact in multi-body dynamics that this suffices to eliminate the 
essential source of instability. A theoretical explanation of this observation was given by 
Alishenas [ I ,  21 using a perturbation analysis. 

Both systemi were integrated numerically over approximately three periods using the 
standard fourth-order Runge-Kutta method with constant step size. Figures 1 4  contain 
logarithmic representations of the integration error, the violation of energy conservation and 
of the residuals of the position and velocity constraints, respectivelyt. The calculation were 
done for the initial values x = 0, y = - 1 ,  p x  = 2, pr = 0 using a step size of h = 0.1. 

One can see that after about two periods the integration breaks down, as the integration 
error (estimated by comparing with the results for half the step size) is of the same magnitude 

t The full curve (labelled 'inv') shows the values for the standard formulation, i.e. sysrem (42); the broken curve 
(labelled '0') shows the outcome for system (43). 
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Figure 2. Energy conservation. 

as the computed valuest. With a step size of h = 0.01 it is possible to integrate both 
formulations over three periods. With that value system (43) could even be integrated over 
four periods. 

It is interesting to note that although the difference in the integration error is not that 
large (about half a power of ten), the physically relevant errors are one to two orders of 
magnitude smaller. The outcome is especially striking for the position constraint residual 
(figure 3). Whereas in the standard formulation it grows approximately proportionally 
to t1,4, it remains almost constant in the stabiIized formulation until the breakdown of the 
inteagation. 

The figures show only the logarithms of the errors. It is quite insbctive to study the 
values with their signs. In the standard formulation the constraint residuals always have the 
same sign after perhaps some initial oscillations. Usually one finds a drift to smaller and 
smaller values for the distance from the origin. In contrast, in the stabilized formulation the 
trajectories oscillate around the constraint manifold under the influence of this additional 

t The growth of the integration error depends smngly on the initial values. Alishenas [I] uses x = 1. y = 0, pr = 
p ,  = 0 and repons a cubic growth. But figure 1 shows an exponential growth for OUI initial values! 
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Figure 3. Position constraint residual. 
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Figure 4. Velocity constraint residual. 

Table 1. Errors at I = 10 for different step sizes 

1321 

Involution Faddeev-lackiw 

h 0.1 0.05 0.01 0.1 0.05 0.01 
. . ~~ 

AI 0.21 1.7 IO-* 3.2 10-5 5.5 10-2 1.4 10-3 4.1; 10-7 
A~ 2.5 x 10-4 1.8 x 10-5 2.9 x 10-8 2.4 x 10-5 6.2 x 10-7 1.3 x 10-7 . , 

A, 3.9 x 10-5 2.6 x 10-6 4.4 x 10-9 4.6 x 10-6 4.3 x 10-7 8.5 x 10-10 
A p  7.3 x 4.9 x 8.2 x lo-* 6.7 x 2.1 x 6.8 x IO-" 

'force', it has become a kind of attractor. 
Table 1 shows how the errors for both approaches depend on the step size. The values 

are fort = 10. A, denotes the integration error; AE is the deviation from the correct energy; 
Ap, A, denote the position and velocity constraint residuals, respectively. Obviously, the 
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stabilizing effect occurs at any step size. Note the significant improvement for h = 0.01: 
the errors improved by up to five orders of magnitude compared with h = 0.1! 

7. Field theory 

Barcelos-Neto and Wotzasek 141 also apply their method to field theories. Then the equations 
of motion are partial differential equations. We have shown in [35] that even the classical 
Dirac approach may get problems, if the field equations are over-determined. The reason 
for this effect is that some constraints may arise as purely spatial integrability conditions, 
whereas Dirac considers only the temporal evblution of the constraints. The approach 
presented in section 3 suffers from exactly the same problem. 

As a simple example consider the following slight modification of the class of linear 
Lagrangian densities considered in [35] 

L[4, U ,  A A I  = var4 + L L K ~ Q  - f (@)I + X a y 4  - g(4)l. (47) 
Obviously, v ,  p, h are just multipliers. The functions f ,  g are arbitrw but fixed. The 
corresponding Euler-Lagrange equations are 

It is straightforward to show that this system is involutive, if and only if the functions f, g 
satisfy the integrability condition 

(49) f ' g  - fg' = 0 
i.e. if f (4)  = cg(q5) for some constant c .  

fields 4 ,  v,  f i ,  A, it is given by 
For the symplectic formalism we must first construct the matrix A. If we order the 

0 - 1 0 0  

,A.;(' 0 0 0 0  '1 ' 

0 0 0 0  

Thus there exist two eigenvectors and we obtain the two obvious constraints 

a1 = a , @ - m )  s t ,=~a ,+-gu) .  (51) 
Following the same steps as in the finite-dimensional case, we are led to consider the 

modified Lagrangian density 

E = vac@ + (P+ a,ru)[axg - fcm + (A + a,m,4 - g(4)i (52) 
where LY, B are the new multipliers. But we gain nothing by this transformation, as the new 
constraints represent the temporal prolongation of the original ones and vanish due to the 
field equation 4, = 0. 

Thus the algorithm of Barcelos-Neto and Wotzasek terminates here without finding 
condition (49). Their conclusion would be that since no new constraints have occurred 
but the matrix d is still singular, the system is subject to first-class constraints. This is of 
course indeed correct. as we have the obvious 'gauge invariance' under translations of the 
multipliers. 
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But this result is completely irrelevant if f, g do not satisfy (49), because then the field 
equations are inconsistent. In a more general situation even their conclusion of the existence 
of first-class constraints might be wrong, as the overlooked constraint could lead to further 
ones such that the final system contains only second-class constraints. 

We must therefore conclude that this method does not fulfil the first task of any approach 
to constrained theories, namely checking the consistency of the field equations. The reason 
for the failure of the algorithm of Barcelos-Neto and Wotzasek~lies in the fact that they use in 
the construction of the modified La-mgian only one multiplier. By using D multipliers A”, 
if D denotes the dimension of spacetime, and adding a term of the form a,AW for each 
constraint a. one can enforce the generation of all integrability conditions. 

In our example, one indeed produces the consistency condition (49) this way. The 
price is, however, the introduction of six multipliers. They all remain arbitrary in the 
field equations and therefore correspond to gauge symmetries. In order to construct Dirac 
brackets these must be fixed explicitly. 

8. Conclusion 

As in our previous paper [35] we have shown that the symplectic formalism can be well 
understood by taking the point of view of the formal theory of differential equations. At the 
level of point mechanics the identification of the various approaches to constrained systems 
with the completion of the equations of motion to an involutive system may be of more 
theoretical interest than practical importance. But we have shown that in the case of field 
theories it is sometimes difficult to circumvent the involution analysis. 

We have seen that from the point of view of differential equations~the idea behind 
the approach of Barcelos-Net0 and Wotzasek [4, 51 is rendering the equations of motion 
normal by extending the configuration space. This construction is only possible for second- 
class constraints, as a normal system of ordinary differential equations is of finite type, 
whereas in systems with gauge symmetries the general solution always contains arbitrary 
functions [33, 341. 

From a morephysical point of view their approach can be understood as a transformation 
of the second-class constraints into first-class ones in the extended configuration space. 
In the simplest case the corresponding gauge transformations are just translations in the 
additional coordinates and the extended configuration space foliates in identical copies of 
the original one. 

Such a ‘conversional approach’ to second-class constraints is not new. Batalin and 
collaborators ([7] and references therein) have developed an approach with the same goal. 
There are, however, a number of significant differences between the technique presented 
here and that of Batalin et al. 

They also introduce additional coordinates, so-called ghosts, but with a different 
Grassmann parity. Thus their phase space is always a supermanifold. They construct 
new constraints in the form of a power series in the ghost variables, whereas we leave the 
constraints unchanged and instead modify the symplectic structure. They can also handle 
the case that first-class constraints are present [6], which is currently not possible in the 
Faddeev-Jackiw framework without an explicit gauge fixing. 

Montani and Wotzasek [27, 281 have shown how one can construct the generators of 
gauge symmetries from the null vectors of the symplectic matrix A in the case of systems 
with first-class constraints. Nevertheless, the only way to obtain the Dirac brackets seem 
to be to completely fix the gauge and thus to render all constraints second class, This is a 
considerable disadvantage of this approach for systems with both types of constraints. 
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The symplectic formalism is sometimes computationally more effective thm the standard 
Dirac approach, even if one has to rewrite a higher-order Lagrangian as a first-order one. 
For this reason it is currently fairly popular. However, we believe that it has certain 
disadvantages in the case of field theories. Proving the consistency of the field equations 
can become rather cumbersome and may lead to a proliferation of multipliers. Furthermore, 
the formalism is not covariant, as it is based on the selection of velocities and requires the 
fixing of all gauge symmetries. 

We have shown that the method of Barcelos-Net0 and Wotzasek has interesting 
numerical properties and can be seen in the context of what numerical analysts call constraint 
stabilization. In this language we can formulate the general idea as follows. Physically, 
all dynamics happens on the constraint surface. The ambient space is an artifact of the 
modelling and the dynamics is not uniquely defined there. Thus we can change the system 
in the ambient space as we like as long as we take care that on the constraint surface the 
same dynamics arises. 

The problem is to find a change such that the arising equations of motion are more 
stable against the drift off the constraint manifold. Our modification of the Lagrangian 
makes this manifold into a kind of attractor for nearby trajectories. Since it was guided 
by the idea of maintaining a symplectic structure, unfortunately it cannot be generalized to 
arbitrary differential-algebraic systems. 

A somewhat related approach was presented by Simeon 1361. He includes not only 
the velocity constraints but also the constraints at acceleration level into the Lagrangian 
(which is then second order!). After a ftuther transformation of the equation of motions he 
obtains a system of differential equations containing an explicit projection on the (velocity) 
constraint manifold. 

The philosophy behind such approaches is rather to modify the differential equations 
then using special techniques for differential-algebraic systems. A typical method there 
is, e.g. to perform after each step of the numerical integration a numerical projection on 
the constraint manifold. We accomplish more or less the same effect via an equivalent 
reformulation of the equations of motion. 
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